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Abstract. Non-linear transformations of dynamic variables are used to extend a linear 
symmetry SO(3) of a quantum mechanical system to a larger one, SO(4). By making an 
application of this formalism to the hydrogen atom, the Pauli-Lenz vector and its variants 
are systematically derived. 

1. Introduction 

In view of the symmetry approach to quantum mechanics, the so-called Pauli-Lenz 
vector of the hydrogen atom is quite an interesting quantity. In quantum mechanics, the 
quantum numbers of a system are usually explained in terms of its manifest linear 
symmetries. For instance, the quantum numbers of the harmonic oscillators are given 
by their symmetries SU(n). The hydrogen atom has a symmetry SO(3) due to the 
spherically symmetric potential, by which its angular momenta are explained. However, 
its energy spectra are degenerate under the symmetry and cannot be explained by it. 
They are indeed connected with a dynamical symmetry SO(4) (Fock 1935, Bargmann 
1936) which never manifests itself in the system.? The dynamical symmetry SO(4) is 
generated, together with the angular momentum, by the Pauli-Lenz vector 

( -2H)-”2(4(Jxp-p xJ)+x/IxI), (1) 

where H, J, p ,  x are the Hamiltonian, the angular momentum, the linear momentum 
and the relative coordinate respectively. (For simplicity, Planck’s constant t i ,  the 
electron charge and the reduced mass will be set to unity throughout the paper.) This 
vector was derived by Pauli (1926), referring to the Runge-Lenz vector (Runge 1919, 
Lenz 1923) in the classical Kepler problem, and he first calculated the spectra of the 
hydrogen atom by using it. Since the vector was heuristically found by analogy with 
classical mechanics, the extended symmetry SO(4) was called a hidden symmetry and 
the degeneracy of the energy spectra under the manifest symmetry SO(3) an accidental 
one at that time (Fock 1935, Alliluev 1957). 

To discover symmetries which are not obviously manifested in the Hamiltonian of a 
given system is physically and mathematically significant. This problem has been 
investigated by many authors. Niederer (1972, 1973) has studied the maximal kine- 
matic invariance group of the free Schrodinger equation and of the harmonic oscillator. 
Boyer (1974) has carried out a similar analysis for an arbitrary potential. Miller (1977) 

t For survey references to the Coulomb problem in quantum mechanics, see for example Biedenharn and 
Brussaard 1965, Mackintosh 1971, Englefield 1972. 
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has developed a mathematically precise framework concerning symmetry and separa- 
tion of variables. Goldstein (1975) has discussed the historical development of the 
discovery of the Runge-Lenz vector in classical mechanics, and Heintz (1974) has 
attempted its geometric determination. However, for the Pauli-Lenz vector in quan- 
tum mechanics, any systematic derivation has, to the author’s knowledge, not been 
reported since Pauli’s heuristic one (1926) which is based on analogy with the classical 
Runge-Lenz vector. 

In the present paper, we will develop a formalism for enlarging a given linear 
symmetry through taking account of non-linear transformations of dynamic variables 
(§  2) and will apply it to the hydrogen atom systematically to derive the Pauli-Lenz 
vector and its variants (0 3). The non-linear transformation was first considered by 
Weinberg (1968) to discuss chiral dynamics in quantum field theory. The present work 
will suggest a useful application of the non-linear formalism to classical and quantum 
mechanics. 

2. Non-linear extension of a linear symmetry SO(3) to SO(4) 

Let us consider a three-dimensional quantum mechanical system which is described by 
the canonical coordinates xa and momenta pa (a  = 1 ,2 ,  3) obeying the canonical 
quantisation rule 

[ x a ,  Pbl= iaab .  (2) 

Suppose the system has a linear symmetry SO(3). That is, the system is invariant under 
the following linear transformations of the dynamic variables: 

where Ja are the generators of SO(3) obeying the commutation relations 

and Eabc is the totally antisymmetric tensor. (Throughout this paper, summation over 
repeated indices is understood.) The generators Ja are realised in terms of the dynamic 
variables as follows: 

Ja = EabcXbPc. ( 5 )  

Now in order to extend the symmetry SO(3) to a larger one, S0(4) ,  let us introduce 
three additional operators Ka which form, together with Ja, the Lie algebra of SO(4): 

Then our question is whether such operators Ka can be realised out of the existing set of 
the dynamic variables. Once this is answered, the dynamical group SO(4) can be built in 
the system. 

Let us study the realisation of K,. Equation (6) tells us that the Ka form an SO(3) 
vector, which will be constructed out of the coordinates xa,  the momenta pa and the 
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generators J,. As is easily seen from the commutation relation (4), the Ja do not 
contribute to the K,. Thus we can set 

Ka = paf + xag, (8) 

where f, g are SO(3) scalars. The order of xa,  pa and f, g in equation (8) is not unique; 
for instance, one might also take Ka = f p a  + g x a .  These formulations are essentially 
equivalent. Detailed properties of Ka are described by the commutation relations of 
f, g and xa,  pa ,  which we write as follows: 

[f, pal  = i(paF1+ XaFZ) ,  [f, xaI=  -i(xaG3 + ~ a G 4 ) ,  ( 9 a )  
[ g ,  pal  = i(paF3 + xaFq), ( 9 b )  

where Fi, G , ( i  = 1 , 2 , 3 , 4 )  are SO(3) scalars. These equations show that the operators 
Ka generate non-linear transformations of the dynamic variables. For the realisation 
(8), equation (7) yields the following constraint on f, g :  

[ g ,  xaI = -i(xaG1 +PaG2) ,  

L = i[f, g ] +  (F3 - F 2 ) f +  (G3 - G 2 ) g  - 1 = 0. (10) 

Further, the quantisation rule (2) gives additional important relations: from the Jacobi 
identity of Ka, xb, pc ,  it follows that 

F3 = G I ,  G3 = F1. (1 1) 

By taking into account these relations in equation ( 9 ) ,  the functional form of f, g is 
specified as 

(XP)(5(X2) + P ( P 2 ) )  + 77(x2) + U ( P 2 ) ,  (12) 

where the functions 5, p, 7, U are subject to the constraint (10) and ( x p ) ,  x 2 ,  p 2  stand for 
Xapa, xaxa and papa respectively. The expression (12) for f, g is the result most 
characteristic of the present formulation. 

3. Examples, and the Pauli-Lenz vector and its variants 

In this section, we shall first present some examples of the general formulation 
developed in the preceding section. Next, applying them to the hydrogen atom, we shall 
carry out a non-linear extension of its symmetry SO(3) to SO(4) and derive the 
Pauli-Lenz vector and its variants. 

3 . 1 .  E x a m p l e s  

3 . 1 . 1 .  Let f be 

f = c ( x p ) ,  

where c is a constant. According to equation (12), we write g as 

g = (XP)(S + P I  + 77 +U. 

From equation ( lo) ,  it follows that 

[ = p = O ,  
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and 77, U are subject to the constraint 

(14) 
2 L = 2 C X 2 7 7 l +  CQ - 277u1- 2cp ut- 2uu’+ c u  - 1 = 0 ,  

where a prime denotes differentiation with respect to the argument x 2  or p 2 .  Thus we 
have 

Ka = ~ p a ( x ~ ) + ~ a ( ~  + U ) *  (15) 

3.1.2. Let us consider the case where the scalar functions f, g are given by the general 
polynomials of second order. (Ones of higher order would be given through non-linear 
transformations of the variables which leave the quantisation rule unchanged.) We 
write them as 

(16a)  

(166)  

2 f = f 1 +f2x +f3(XP) +f4P , 
g = g1+ g2P2 + g3(xp) + g4x2, 

where fi, gi ( i  = 1 ,  2,3 ,4)  are constants. The constraint (10)  yields the following 
relations among them: 

L=O: 2flf2+2glg2-flg3-glf3+1 = o ,  (17a)  

(17b)  

2g: + g2f3 + 2f2f4 - 3g3f4 = 0, (17c)  

f2f3 + g2g3 -f3g3 = 0, ( 1 7 4  

fig2 -f4g4 = 0. (17e)  

Ka = Pa (fl  +f2x2 + f 3 ( x ~ )  +f4p2) + xa (g l+  g2p2 + g3(xp) + g4x2)- 

2 2f2 +fZg3+2g2g4-3f3g4=0, 

With these fi, gi, 

(18) 

3.1.3. Let f be a function of x 2 :  

f =f(x2).  

From equation (lo), we have 

and 
p = u = o ,  

2 f f + 1  t=- f - 2 2 7  
(f # 0, const x JZ). 

The result is 

3.2. The Pauli-Lent vector and its variants 

Let us apply the above results to the hydrogen atom. All the examples given above will 
turn out to yield the Pauli-Lenz vector or its variants if the invariance with respect to the 
Hamiltonian is imposed. The Hamiltonian H is given by 

- 
H = ip2 - 11 Jx2. (22) 
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Since we concern ourselves with the bound states, H is assumed to be a negative 
constant in the following. 

In example 3.1.1, the invariance of the operator (15 )  specifies v ,  (+ as 
2 -1 /2  2 v = c ( x  ) , a = - c p .  

Then equation (14 ) ,  which manifests a structure of the group SO(4)  in the present 
example, becomes 

$ p 2 -  1 / J 7 +  1 / 2 c 2  = 0. 

This is nothing other than the Hamiltonian (22 )  with c = (-1/2H)”’. Thus K, is given 
as 

K, = ( - 2 H ) - ” 2 ( p , ( x p ) + % ( 1 - p 2 ) ) ,  
J x  

= ( - ~ H ) - ~ / ~ ( $ ( J  x p - p  x J )  + x/ JT),. 
This is just the Pauli-Lenz vector (1) .  

For example 3.1.2, in order to obtain an invariant K,, we must slightly modify the 
Hamiltonian; the use of equation (22 )  gives a trivial solution K, = 0. The quantisation 
rule ( 2 )  allows the scale transformation of the dynamic variables: 

x ,  + SZ,, 

J T ( 1  +G2)  = 21s = (2/(-H))1’2.  

P a  + s-lGa.a, 

where s is a scale parameter. By takings = (-2H)’/’, the Hamiltonian (22 )  is written as 

(23 )  

Since for the states diagonalising H the LHS replaces the Hamiltonian, let us determine 
the invariant 2, by equation (23):  

[J? ( 1  + G ~ ) ,  R,] = 0. 

f 3  = 2g1, 

We have then 

g2 = -g1, 

other coefficients vanishing. Further, from equation (17 ) ,  it follows that 
1 

f 3 =  1. 1 g l  =I, g2 = -3, 

Thus 

R, = ; Z a ( 1 - ~ 2 ) + @ a ( @ ) ,  

= $(i x p’ -p’ x i + i ( l  +G2)),. 
Taking account of 1 + p 2  = 21s Jp, (equation (23 ) ) ,  and rewriting it in the original 
variables, we easily verify that equation (24 )  reproduces the Pauli-Lenz vector. Thus it 
gives a polynomial-type variant of the Pauli-Lenz vector. 

For equation (21 )  of example 3.1.3, we make a unitary transformation 

f a  +pa7 F a  + - f a ,  

which leaves the quantisation rule unchanged. Then the invariance with respect to the 
Hamiltonian (23 )  yields just the same Ea as the above equation (24) .  Thus this one is 
also another polynomial-type variant of the Pauli-Lenz vector. 
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For any explicitly given f, we could in a similar manner obtain the corresponding 
additional operators K, for extending the given linear symmetry. As is seen through 
the above examples, these operators seem to reproduce the Pauli-Lenz vector or its 
variants under the invariance condition with respect to the Hamiltonian of the system. 

4. Concluding remarks 

In quantum theory, quantum numbers of a system are usually explained in terms of its 
linear invariant groups. As is seen in recent high-energy physics, with development of 
experimental and theoretical studies, more and more new quantum numbers are found, 
and it becomes impossible for the groups to accommodate them. The most con- 
ventional way in which physicists have dealt with these new quantum numbers has been 
the introduction of new additional degrees of freedom (fields or particles) so as linearly 
to extend the symmetries. This procedure is however not complete: the number of 
unknowns is never lessened because of the introduction of the hypothetical 
degrees of freedom. Although there have been a number of successes of this sort in the 
history of high-energy physics, recent compound models of elementary particles suffer 
from this serious problem, and the confinement of the assumed basic fields is extensively 
discussed nowadays (see e.g. Marciano and Pagels 1978). In this connection, it should 
be noticed that the introduction of new degrees of freedom in the system is not always 
necessary in order to enlarge its invariance groups, if one takes into consideration 
non-linear transformations of the dynamic variables. Such a situation can typically be 
observed in the dynamics of the hydrogen atom. In the present work, for the Coulomb 
problem in quantum mechanics which has a manifest symmetry S0(3), the extra 
generators of a larger dynamical symmetry SO(4) have been realised non-linearly on 
the existing set of dynamic variables. This is nothing other than the so-called Pauli-Lenz 
vector for the hydrogen atom. 

Our formalism could in a straightforward way be generalised to the non-linear 
extension of a linear symmetry SO(n) to SO(n + 1) for quantum mechanial systems, and 
also for classical ones if one translates it into the classical version. 
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